The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer's disease
نویسندگان
چکیده
Differentiated neurons display specific biochemical, physiological and morphological properties that apparently prevent them from further cell division. Nevertheless, expression of cell cycle modulators persists after neuronal differentiation and is upregulated under stress conditions, such as trophic factor deprivation, oxidative stress and the presence of DNA damaging agents. This apparent reactivation of the cell cycle has been postulated as a sine qua non for neuronal death in response to those stress conditions, particularly in Alzheimer's disease. However, the physiological and pathogenic implications of a putative neuronal cell cycle are far from clear. Here, we discuss the notion of the neuronal cell cycle as a mediator of cell death, with particular emphasis on Alzheimer's disease.
منابع مشابه
P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملP 62: Markers of Neuroinflammation Related to Alzheimer\'s Disease Pathology in the Elderly
Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on marke...
متن کاملInhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer's disease
Alzheimer's disease (AD) is a progressive and fatal brain disease, but the pathogenesis of AD is still not understood. Aberrant cell-cycle re-entry of neuronal cells is emerging as a potential pathological mechanism in AD. Polo-like kinase 1 (Plk1) is an established regulator of many cell cycle-related events. Interestingly, Plk1 is present in susceptible hippocampal and cortical neurons of AD ...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملEffect of Trans-cinnamic Acid on Cognitive Deficit, Cell Density of CA1/CA3 Regions, and Cholinergic Activity of Hippocampus in Trimethylettin Model of Alzheimer's Disease
Introduction: Trimethyltin (TMT) intoxication is associated with damage to the cholinergic system in the hippocampus. The aim of this study was to evaluate the effect of trans-cinnamic acid on cognitive deficit and cell damage in CA1/CA3 regions of the hippocampus, as well as measure the activity of acetyl choline esterase (AChE) in the hippocampus of a rat model of Alzheimer’s disease (AD). Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2009